Tag Archives: Umbrella

Odd jobs


Posted on November 1, 2014 by

When you are building a house, not all the days are big days…  There are lots of “odd job” days.  I don’t usually setup my camera, and when I do, the footage is not usually interesting enough for a post of its own, but I thought I show a collage of odd-job days to document the gist of it.

The Video:

A little more detail:

The hardest part about these odd jobs is just to find the time for the drive out to the property.  Now that the weather is cooler and I am pretty much out of vacation days, I usually wait for a warm enough day and head out to the property after work.  But the days are getting shorter, so after I drive an hour to get there, I only manage to put in a couple hours of work before the sun sets.  I bought some work lights to extend my time a bit before I need to pack up and head back.

As winter approaches, working around the weather is quite a challenge.  The concrete weather proofing, grouting and other tasks often have a minimum temperature for correct application.

I really wanted to get the Quonset hut up sooner, but there were delivery delays.  It was eventually delivered just before I had to take a 2 week business trip.  I had to protect the delivery from the weather while I was away, so I laid out some plastic to keep it dry.  I put the plastic down first and set the steel (all on one skid) on top of it and then folded the plastic over like a taco…  The plastic at the bottom keeps the moisture from coming up out of the ground, the plastic on top sheds the rain, and the open sides were to let any moisture that did get in, get out again.  I screwed wood strips on both sides of the plastic to keep in its place while I was away… It worked.

We were also in a rush to get rye grass growing before the weather got too cold for it.  Actually, fall is the best time to plant grass (the air is cool, but the earth is warm), but I would have liked to start it closer to Labor Day.  Sherri planted and raked in most of the seed, but I got in some rake time when I could.


FrostProtectedShallowfoundationThe garage ends also needed insulation against the footings.  The basic idea behind “Shallow Frost Protected Footings” is to thermally separate the soil under the footings from the cold air in winter so that ice “lenses” don’t form and push up the footings.  The normal solution is to put the base of the footings below the “frost line”, about 4 ft deep in my area.  Temperature change happens by conduction, so it doesn’t really matter how “deep” the footings are, the insulation creates a longer path for the conduction and keeps the footings warm.   This building code exception to normal building practice allowed me to save a lot of money because I didn’t need to dig the footings as deep and use all that extra digging, concrete and money.   Adding on this insulation is a small price to pay.   Although, technically, my sandy soil means I don’t really have to worry about frost heave, the insulation is still helpful in keeping the garage temperature more stable.


This last job in the video was just cleanup…  We (and the various crews who came to work on the site) had been stacking used wood and rebar on side of the building site.  Now we needed to backfill that area and it was time to get that stuff out of the way.  We also wanted to protect the better wood and put in under the Quonset hut.  Many hands make light work… So Sherri and the boys came out to help.  I really appreciate my crew.

Backfilling the Trench


Posted on September 9, 2014 by

After digging the trench and laying the septic pipe, drain tile and earth tubes, it was time to backfill the trench.  We started at the top by the house, but I didn’t record the first couple hours for some reason, but I caught enough of the rest to put this video together.

The Video

The Story

We placed the earth tubes by staking them into the side of the slope.  This saved us from killing ourselves manually back-filling the trench on what turned out to be the hottest day of the year. However, it did slow down the back filling process.  Instead of just pushing the dirt back into the hole, we had to carefully (and manually) backfill around the earth tubes so they would keep the right position and slope…  I guess this added another couple hours of backhoe time to the true cost of the earth tubes.

I was actually surprised how the excavator attacked the problem.  I guess I naively thought he would bring the dirt in from the side where the dirt had been placed…  Instead, he started from the other side and dug his way down.  He dug undisturbed dirt and put it in the hole under and around my earth tubes.  Once the tubes were covered enough to protect them from the excavator and there was a slope for him to climb down into the trench (in the video, you can see him slip a little), the excavator was able to reach up and pull the sand from the far side, down into the trench.  From there he was able to quickly move up and down the length of the trench pulling in the dirt.

Eventually, when the trench was almost full, he was able to climb out the far side and reach some of the other dirt.



At some point, Dick parked the excavator and got into the bulldozer to level off and “reshape” the hill.



At this point, the Septic field is not yet complete, so there will still be some more earth moving before the septic system is complete.

My Pink Skirt

Marty and Dick knew I wanted a flat area 4 feet up the wall to put an insulation skirt in, so they flattened and tamped the ground in that area for me.

Meanwhile, I had been doing my own work for my employer in the trailer, but when they guys took their regular lunch break at noon, I started my 1 hour shift.

The idea is trap a bubble of heat around the house with an insulation skirt or umbrella.  This idea was popularized by John Hait who calls it “PAHS” or Passive Annual Heat Storage, but the idea had been fully researched by the University of Wisconsin several years earlier.  You can read more about it here.

The umbrella is really supposed to be several layers of insulation with layers of plastic between. I only put in one layer of 2 inch Rigid insulation (Foamular 250) and ran it out about 16 ft (2 sheets) from the house.  Since this is really more of an insulating skirt beyond the basement rather than an umbrella over my home, I didn’t feel the need to go the full 6 inches thick that I plan to over the rest of the house.  Similarly, I didn’t feel the need to put several layers of 6 mil plastic in this location.  Instead I just went with one layer of pretty think painters plastic.  The point of the plastic is just to reduce the amount of water that can go thru this area and steal away the stored heat with its high specific heat capacity.  I sloped it all way from the house and covered it over.

I will eventually overlap this skirt with the larger insulating umbrella.  Our backyard patio will eventually go over this area.




Posted on April 7, 2014 by

The biggest difference between a cold damp cave and a warm modern earth shelter is insulation. No, the earth does not provide good insulation for your earth sheltered home.  While some estimate that a foot of moderately dry earth has an R value of ~5, it is not structurally practical to use earth for that purpose (above ground).  Instead, we see the earth as a large thermal capacitor and cover it with an umbrella of insulation.   Without the insulation, your home would be moderated to something a little less than the annual-average outside air temperature.  With the insulation umbrella, the walls and earth temperature within the envelope will eventually stabilize near your indoor air temperature, which is a lot more comfortable.

There are a number of types of insulation, as well as a number of different locations where it needs to be used.


For passive solar design, we want thermal stability, which means we want as much mass inside the insulation envelope as possible.  Earth sheltered homes, particularly concrete ones, have a lot of thermal mass.  Insulating the inside and leaving most of the mass outside the thermal envelope would result in greater temperature swings and basically miss the point of earth sheltering.   PAHS or other earth sheltered “umbrella” concepts (such as my “by-passive annual heat storage”) relies on taking that concept further and including many tons of earth within the envelope.

If we assume that we are going to insulate outside of the home instead of inside, then we must rule out all the light and fluffy insulation options such as spun fiberglass (batts or blown in), wool, hemp, wood chips, etc.   Those types of air based insulation have no real structure of their own.  They can only be used in a framed wall situation where they can be kept dry and uncompressed.   Since the layer outside of the walls is often damp and very compressed, we are left with with rigid types of insulation as our only real option.

Most earth sheltered homes do have some conventional walls that are not earth sheltered.   The fluffy insulation may be applied in those locations, but spray foam insulation would do a much better job of keeping out infiltration.


Rigid Insulation

This brings us to the types of rigid insulation.  In traditional construction, this is used under the slab or around the basement walls.  A slightly less conventional application may be to cover shallow footings for frost protection.  Those environments are all somewhat similar to the earth sheltered umbrella concept (but the geometry is not).


There are several main types of rigid insulation.

Note that you can also purchase used rigid insulation for a fraction of the price of new…  It is worth looking for suppliers in your area.


Polyiso is considered to be the “best stuff” for above ground insulation.  It is the yellowish stuff with the metal foil backing.  It has the highest R value per inch (5.6 to 6.8 per inch, although many claim R7/inch), which means you can fit more R value into a given wall thickness.  It also has “green” attributes such as being mostly made of recycled materials and not including any “global warming” ingredients.

However, it is also the most expensive stuff.  For an earth sheltered application, we don’t care too much about thickness so it doesn’t make sense to pay for thinner insulation.  But more importantly, Polyiso absorbs water like a sponge and is not considered suitable for below grade use.  Just don’t even consider it.

XPS (Extruded Polystyrene)

Extruded Polystyrene is the pink stuff or blue stuff or green stuff.  This is the one you usually see on building sites, particularly for below ground applications.

To make XPS, crystals of solid polysyrene are combined with additives and a patened blowing agent.  The combination is melted under high pressure into a viscous (thick) liquid plastic state.  The goop is extruded through a die (a slot the exact thickness of the panels ) into air at standard pressure.  The blowing agent expands the foam immediately, and is trapped inside (increasing its Rvalue) as the panel is shaped by the die.  The extruder makes a continuous panel that comes out of the machine onto rollers where it cools and the sides are trimmed (sometimes cut with tongue and grove) and eventually, the boards are sliced to length.   Here is a video

The manufacturing process is what gives XPS its desirable properties; its precise size, its hogeneous structure, its compressive strength and tough skin.  The trapped blowing agent gives it a superior R value and premium price.

XPS is recommended by John Hait in his book about how to create a PAHS umbrella.   Proponents are quick to mention that it has a higher compressive strength and lower water permeability (compared to EPS).  It also has a decent R value of about ~5 per inch.  You can also buy even higher density XPS that has 25 PSI rating where you need it.


But the more I look into it, the more I suspect some of the difference is marketing to help sell products that are still patent protected.  Big companies like DOW (blue stuff) and Owens Corning (pink stuff) need to promote their products to compete with the much more widely available and lower cost EPS (Expanded Polystyrene).

Here is an article questioning the supremacy of XPS, and here is a website Owens Corning put together to protect their brand…  Personally, the Owens Corning arguments didn’t sway me.  Yes, they show water passing thru EPS, but it passes right out again (that could be a good feature).  The water injected into the XPS stays inside and permanently degrades it (by forcing out the blowing agent), just as the EPS people say it will.

Traits like dimensional stability, R-value per inch, and even the higher compressive strength and water resistance are not as critical as you may thing when constructing an insulating umbrella.  I explain why in the EPS section below.

If you actually expect that your rigid insulation will be submerged in water much of the time, we recommend you reconsider building an earth shelter on that site.

XPS was originally invented by DOW in 1941 (from Polystyrene which was invented over 100 years before that).  Its first application was to help float life rafts for the US Navy.  They have been promoting and defending their products aggressively ever since.  Polystyrene is less aggressively defended because it is not owned by any one company.  Competition between polystyrene producers reduces costs but leaves less money for marketing and little time for cooperation.

EPS (Expanded Polystyrene)

This is the stuff white coffee cups or packing peanuts are made of.  It can be made (steam compressed) into any shape, which is why it is also the stuff that ICF (Insulated Concrete Forms) companies use.  Its manufacture is not so limited to a handful of competitors, so the prices are much more competitive.  It is often sold without a brand name, or you can find branded versions that add features like a polylaminate waterproof facing.  It does have a lower R-Value per inch, but a higher R-Value per dollar.

To make EPS, the factory starts with tiny 1 mm polystyrene pellets.  These are expaned with steam  to 40 times their original size (pre-expanded as the blowing agent, pentene gas, escapes and is replaced by air).  The now larger pellets are cooled, dried and stored until needed.  To make anything from the pellets, they pack them into the right shaped mold.  In this video, they use a block mold because they are just making rigid panels.  The amount they pack into the mold affects the density, compressive strength, impermeability and the price.  The pellets are steam fused together.  In the case of rigid foam boards, the large block is sliced precisely with hot wires strung across the assembly line.  This second video shows how cups are made in much smaller molds.


The primary criticism against using EPS below grade is that it absorbs water more easily than XPS.  However, studies show that while it does absorb water more easily, it also dries out more easily.  Studies done on samples that were buried for over a decade show that the EPS actually retains its R-value much better than XPS.

Manified cross section of EPS foam showing the microscopic gaps between the beads where water can pass through

Manified cross section of EPS foam showing the microscopic gaps between the beads where water can pass through

EPS is basically bubbles of air surrounded by rigid polystyrene.  If the air is displaced out by water, other air can replace it when the water leaves.  On the other hand, The R-value for XPS depends on the special blowing agent gases trapped in its cells.  When that gas leaks out over time, the R-Value is permanently reduced.  In an effort to keep the gas from leaking out in the first place, XPS has more polystyrene around its bubbles.  This gives it extra density and compressive strength, but also means that once water gets in, it is very difficult to dry the XPS out again.

But the ASTM C272 test shows that EPS absorbs water easily…?   In that test, a 3 inch square of a half inch thick sample is completely submerged for 24 hours and then immediately weighed without giving the water any time to run out.  This is hopefully not what will happen to your panels.  EPS industry excavations of real EPS and XPS boards that were buried for 15 years tell a different story. www.epsindustry.org, Or here, or the technical bulletin here…


Crushed? Lets do some math.

Some builders are concerned that EPS has a lower compressive strength than XPS.  This is true, but the real question is how much compressive strength do you need?  Lets do some math.

What compressive strength do you need to support 6 inches of concrete (assume 150lbs/cuft)?  Lets take that cubic ft and cut it in half to get down to a 6 inch thickness weighing 75 lbs/sqft.  Then lets divide by 144 sqin/sqft to get 0.52 psi…  A lot less than the 10 to 15 psi offered by low end EPS.

Lets park a 10,000 lb forklift on the concrete, that weight gets spread wide by the concrete and rebar.  Even if we assume that the weight is all applied in a small 6ft x 6ft area (it would really spread much further), the pressure on the underlying insulation never exceeds 2.5 psi.

Now lets imagine we are talking about an earth sheltered umbrella without a concrete layer to spread the load out.  Lets imagine that we have 3 ft of earth over the umbrella (assume 120lbs/cuft).  That is 360 lbs/sqft divided by 144 sqin/sqft equals  2.5 PSI.

What if we drove a 35,000 lb bulldozer over it?  If we assume that the bulldozers treads spread its weight across a 10 ft x 10 ft section of the surface and assume that the load comes down at about 45 degrees (angle of repose), then we would be spreading that load over 256 sqft of EPS.  That comes to less than 1 psi of additional pressure.  Interestingly, the pressure would be higher if the earth layer were thinner.


Falling apart?

A third concern is that the EPS beads can crumble apart.  This is less of a concern with the higher density EPS, but you could certainly have thicker boards crack or break apart when trying to build your earth sheltered umbrella.  This problem only gets worse with thicker boards (they are less flexible).  I don’t have a good solution for the cracking…  But perhaps an umbrella design, featuring sheets of waterproof vinyl or plastic between the layers of rigid EPS insulation, will mitigate the problem or at least trap the cracks.


My Rigid Recommendation:

I would recommend not buying in to the marketing about only using XPS for underground applications.  Instead, look at the research that shows that buried EPS outperforms XPS over time, and for a lower price.  Shop around and go for the best r-value price.

I ended up with a truck load of new XPS foamular 250 sheets that I got a great discount on. However, I also plan to buy a load of used EPS insulation from another source.

Since my umbrella design is layered, I may try a hybrid design with XPS on the top layer to help distribute point loads out a little further and reduce compression of the less rigid EPS…



One of the most pleasant surprises that I found was that I could get good recycled EPS for a fraction of the price of new.  One company offered me a truckload of more than 20,000 sqft of type 1 EPS for under $1000 (this deal evaporated later when I tried to order).    Another company offered me a 7x higher price on a truckload of EPS that was 2nd hand, but never actually used (and therefore in better shape). Google “reclaimed EPS rigid insulation” to find companies near you.

XPS is also available, but tends to fly out of the yard as quickly as it comes in.

Reading various discussion boards on the subject, such as this one, you should be careful to make sure you know what condition to expect.  The reused EPS may have some small holes or other minor imperfections, but that doesn’t matter much when you are laying it under your slab or making an earth sheltered umbrella.  From time to time, you may also be able to get “new” EPS from the recycling place.

While you are looking for recycled EPS, you could also find used billboard vinyls to build your umbrella with.